Introduction

In this document I will explore how to create the first part of the evaluation system I proposed. The working title of this is the “Forecast-Hour Evaluation.” The idea here is that we are looking at the performance of the model by looking at how it performed with different start times (using the most recent 00-hr forecast as input).

Read Model and Observation Data

Read WRF Data

For this evaluation system we need to look at three different output folders. Here we use the folders named, forecast_day_minus_0, forecast_day_minus_1, forecast_day_minus_2. The contents of each of these folders will be similar: wrfout files for 86 forecast hours and time-series data for different locations of interest. Here we will first read the forecast data.

Read the OBS Data

Now we will read the observation data from the ASOS stations. The script that downloads the data is in ./obs_station_day_minus_0/dl_ny_asos.py. The lines for the dates to download need to be changed before running it. Once the files are download, the lines below reads the data and adds column names.

## Note: Using an external vector in selections is ambiguous.
## ℹ Use `all_of(select_columns)` instead of `select_columns` to silence this message.
## ℹ See <https://tidyselect.r-lib.org/reference/faq-external-vector.html>.
## This message is displayed once per session.

Unit Conversion

Model and observation data do not share the same units for the same variable. For temperature, WRF is in Kelvin and ASOS is in degreesF. For winds, WRF is in m/s and ASOS is in knots. The formulas used to convert the numbers to a common system is shown here. For temperature I will use Kelvin, and m/s for wind speeds.

Combined Data Frames

Now we have one data frame for all the observations, and three (3) data frames of the WRF data (one data frame per forecast init time). The lines below provide a visual of the data frames.

##             Date.Time year mon day hour min     sec Temperature Mixing.Ratio
## 1 2020-03-03 00:00:05 2020   3   3    0   0  5.0004    281.4672      0.00542
## 2 2020-03-03 00:00:10 2020   3   3    0   0 10.0008    281.4989      0.00543
## 3 2020-03-03 00:00:15 2020   3   3    0   0 15.0012    281.5237      0.00543
## 4 2020-03-03 00:00:20 2020   3   3    0   0 20.0016    281.5451      0.00543
## 5 2020-03-03 00:00:24 2020   3   3    0   0 24.9984    281.5676      0.00544
## 6 2020-03-03 00:00:29 2020   3   3    0   0 29.9988    281.5851      0.00544
##    U_WIND  V_WIND Wind.Speed Wind.Direction Station
## 1 1.22254 6.62521   6.737063       190.4551     JFK
## 2 1.09269 6.17132   6.267309       190.0407     JFK
## 3 1.01160 5.86766   5.954223       189.7818     JFK
## 4 0.94945 5.63086   5.710345       189.5709     JFK
## 5 0.90630 5.45183   5.526647       189.4384     JFK
## 6 0.87041 5.29583   5.366883       189.3336     JFK
##             Date.Time year mon day hour min     sec Temperature Mixing.Ratio
## 1 2020-03-02 00:00:05 2020   3   2    0   0  5.0004    278.6126      0.00272
## 2 2020-03-02 00:00:10 2020   3   2    0   0 10.0008    278.6269      0.00272
## 3 2020-03-02 00:00:15 2020   3   2    0   0 15.0012    278.6368      0.00272
## 4 2020-03-02 00:00:20 2020   3   2    0   0 20.0016    278.6466      0.00272
## 5 2020-03-02 00:00:24 2020   3   2    0   0 24.9984    278.6567      0.00273
## 6 2020-03-02 00:00:29 2020   3   2    0   0 29.9988    278.6671      0.00273
##    U_WIND   V_WIND Wind.Speed Wind.Direction Station
## 1 2.20330 -0.56591   2.274815       284.4048     JFK
## 2 2.19619 -0.56805   2.268465       284.5019     JFK
## 3 2.17427 -0.55716   2.244522       284.3729     JFK
## 4 2.15956 -0.55426   2.229552       284.3945     JFK
## 5 2.14220 -0.55204   2.212186       284.4506     JFK
## 6 2.12870 -0.54625   2.197670       284.3922     JFK
##             Date.Time year mon day hour min     sec Temperature Mixing.Ratio
## 1 2020-03-01 00:00:05 2020   3   1    0   0  5.0004    271.9813       0.0017
## 2 2020-03-01 00:00:10 2020   3   1    0   0 10.0008    272.0778       0.0017
## 3 2020-03-01 00:00:15 2020   3   1    0   0 15.0012    272.1663       0.0017
## 4 2020-03-01 00:00:20 2020   3   1    0   0 20.0016    272.2466       0.0017
## 5 2020-03-01 00:00:24 2020   3   1    0   0 24.9984    272.3199       0.0017
## 6 2020-03-01 00:00:29 2020   3   1    0   0 29.9988    272.3868       0.0017
##    U_WIND   V_WIND Wind.Speed Wind.Direction Station
## 1 4.56979 -4.92495   6.718490       317.1422     JFK
## 2 4.45795 -4.72146   6.493497       316.6443     JFK
## 3 4.37077 -4.55255   6.311049       316.1670     JFK
## 4 4.28755 -4.42281   6.159897       315.8897     JFK
## 5 4.21225 -4.31989   6.033614       315.7228     JFK
## 6 4.14124 -4.22575   5.916657       315.5787     JFK
##   Station           Date.Time Temperature Relative.Humidity Wind.Direction
## 1     JFK 2020-03-02 00:00:00         NaN               NaN            260
## 2     JFK 2020-03-02 00:05:00         NaN               NaN            260
## 3     JFK 2020-03-02 00:10:00         NaN               NaN            260
## 4     JFK 2020-03-02 00:15:00         NaN               NaN            270
## 5     JFK 2020-03-02 00:20:00         NaN               NaN            270
## 6     JFK 2020-03-02 00:25:00         NaN               NaN            270
##   Wind.Speed year mon day hour min sec
## 1   5.658436 2020   3   2    0   0   0
## 2   5.658436 2020   3   2    0   5   0
## 3   5.658436 2020   3   2    0  10   0
## 4   4.629630 2020   3   2    0  15   0
## 5   4.115226 2020   3   2    0  20   0
## 6   4.629630 2020   3   2    0  25   0

Locations for Plots

Match Times for Model and Observations

Select Day of Interest

Time-matching is performed using a routine that can be found in Analysis01-Time_Matching_Problem.Rmd. The time matching will be done per variable. For the Forecast-Hour Evaluation product, we will focus on the temperature, wind speed and wind direction variables. Also, now that we have read all the TS data and ASOS data, we need to extract the day of interest, or doi for the time-series.

Note that for this product the “day of interest” will always be the UTC date of the day before.

We now have filtered data frames for the observations and model data for the day of interest.

Next, we will select only the temperature data for comparing the model and observations. This needs to be done on a per station basis. Note that we use the function drop_na() to drop rows which contain NaN or NA data. Since each variable is measured at different intervals, not all variables will have data available at every time step in the ASOS data. The functions may be too sensitive to missing data and thus we take care to remvove it here from the observations, after we have isolated a particular variable.

Temperature Time-Matching

Location: JFK

Location: LGA

Location: NYC

Wind Speed Time-Matching

Location: JFK

Location: LGA

Location: NYC

Wind Direction Time-Matching

Location: JFK

Location: LGA

Location: NYC

Forecast Hour Evaluation for JFK

For the temperature data I will use Bias, RMSE and MAE for the comparison statistics

JFK - WRF 2-m Temperature (K) Performance
Forecast.Init BIAS RMSE MAE
1 WRF D-0 1.000 1.365 1.058
2 WRF D-1 0.312 0.977 0.679
3 WRF D-2 0.352 1.294 0.974
JFK - WRF 10-m Wind Speed (m/s) Performance
Forecast.Init BIAS RMSE MAE
1 WRF D-0 -0.915 2.230 1.667
2 WRF D-1 -1.559 2.373 1.808
3 WRF D-2 -1.595 2.353 1.802
JFK - WRF 10-m Wind Direction (degN) Performance
Forecast.Init RMSE MAE
1 WRF D-0 28.878 20.575
2 WRF D-1 37.086 27.049
3 WRF D-2 40.537 32.745

Forecast Hour Evaluation for LGA

LGA - WRF 2-m Temperature (K) Performance
Forecast.Init BIAS RMSE MAE
1 WRF D-0 0.089 1.338 1.060
2 WRF D-1 -1.134 1.568 1.289
3 WRF D-2 -0.536 1.696 1.373
LGA - WRF 10-m Wind Speed (m/s) Performance
Forecast.Init BIAS RMSE MAE
1 WRF D-0 -1.719 2.082 1.887
2 WRF D-1 -2.118 2.459 2.242
3 WRF D-2 -1.983 2.391 2.151
LGA - WRF 10-m Wind Direction (degN) Performance
Forecast.Init RMSE MAE
1 WRF D-0 35.464 23.010
2 WRF D-1 51.938 39.425
3 WRF D-2 51.286 40.253

Forecast Hour Evaluation for NYC

NYC - WRF 2-m Temperature (K) Performance
Forecast.Init BIAS RMSE MAE
1 WRF D-0 0.283 1.360 1.051
2 WRF D-1 -1.185 1.731 1.329
3 WRF D-2 -0.223 2.271 1.919
NYC - WRF 10-m Wind Speed (m/s) Performance
Forecast.Init BIAS RMSE MAE
1 WRF D-0 -1.824 2.083 1.856
2 WRF D-1 -1.968 2.204 2.002
3 WRF D-2 -1.914 2.176 1.961
NYC - WRF 10-m Wind Direction (degN) Performance
Forecast.Init RMSE MAE
1 WRF D-0 39.643 20.491
2 WRF D-1 48.649 26.385
3 WRF D-2 41.150 25.615

uWRF and ASOS Time-Series Visualization

Temperature

Wind Speed

Wind Direction