Introduction

In this document I will explore how to create the first part of the evaluation system I proposed. The working title of this is the “Forecast-Hour Evaluation.” The idea here is that we are looking at the performance of the model by looking at how it performed with different start times (using the most recent 00-hr forecast as input).

Read Model and Observation Data

Read WRF Data

For this evaluation system we need to look at three different output folders. Here we use the folders named, forecast_day_minus_0, forecast_day_minus_1, forecast_day_minus_2. The contents of each of these folders will be similar: wrfout files for 86 forecast hours and time-series data for different locations of interest. Here we will first read the forecast data.

Read the OBS Data

Now we will read the observation data from the ASOS stations. The script that downloads the data is in ./obs_station_day_minus_0/dl_ny_asos.py. The lines for the dates to download need to be changed before running it. Once the files are download, the lines below reads the data and adds column names.

Unit Conversion

Model and observation data do not share the same units for the same variable. For temperature, WRF is in Kelvin and ASOS is in degreesF. For winds, WRF is in m/s and ASOS is in knots. The formulas used to convert the numbers to a common system is shown here. For temperature I will use Kelvin, and m/s for wind speeds.

Combined Data Frames

Now we have one data frame for all the observations, and three (3) data frames of the WRF data (one data frame per forecast init time). The lines below provide a visual of the data frames.

##             Date.Time year mon day hour min     sec Temperature Mixing.Ratio
## 1 2020-03-10 00:00:05 2020   3  10    0   0  5.0004    282.5070      0.00572
## 2 2020-03-10 00:00:10 2020   3  10    0   0 10.0008    282.5658      0.00572
## 3 2020-03-10 00:00:15 2020   3  10    0   0 15.0012    282.6164      0.00572
## 4 2020-03-10 00:00:20 2020   3  10    0   0 20.0016    282.6609      0.00572
## 5 2020-03-10 00:00:24 2020   3  10    0   0 24.9984    282.7015      0.00572
## 6 2020-03-10 00:00:29 2020   3  10    0   0 29.9988    282.7396      0.00573
##    U_WIND  V_WIND Wind.Speed Wind.Direction Station
## 1 1.18840 4.21625   4.380532       195.7411     JFK
## 2 1.11826 4.00461   4.157813       195.6020     JFK
## 3 1.07019 3.85333   3.999182       195.5216     JFK
## 4 1.02987 3.71346   3.853624       195.5005     JFK
## 5 1.01057 3.61113   3.749868       195.6342     JFK
## 6 0.98857 3.51797   3.654228       195.6957     JFK
##             Date.Time year mon day hour min     sec Temperature Mixing.Ratio
## 1 2020-03-09 00:00:05 2020   3   9    0   0  5.0004    282.5357      0.00414
## 2 2020-03-09 00:00:10 2020   3   9    0   0 10.0008    282.5535      0.00414
## 3 2020-03-09 00:00:15 2020   3   9    0   0 15.0012    282.5699      0.00415
## 4 2020-03-09 00:00:20 2020   3   9    0   0 20.0016    282.5848      0.00415
## 5 2020-03-09 00:00:24 2020   3   9    0   0 24.9984    282.5990      0.00415
## 6 2020-03-09 00:00:29 2020   3   9    0   0 29.9988    282.6132      0.00415
##    U_WIND  V_WIND Wind.Speed Wind.Direction Station
## 1 2.51192 2.63535   3.640716       223.6263     JFK
## 2 2.45090 2.52218   3.516860       224.1788     JFK
## 3 2.40120 2.43888   3.422557       224.5540     JFK
## 4 2.36938 2.35669   3.341848       225.1538     JFK
## 5 2.33325 2.28962   3.269008       225.5407     JFK
## 6 2.30780 2.23590   3.213283       225.9066     JFK
##             Date.Time year mon day hour min     sec Temperature Mixing.Ratio
## 1 2020-03-08 00:00:05 2020   3   8    0   0  5.0004    279.1117      0.00229
## 2 2020-03-08 00:00:10 2020   3   8    0   0 10.0008    279.1327      0.00229
## 3 2020-03-08 00:00:15 2020   3   8    0   0 15.0012    279.1544      0.00230
## 4 2020-03-08 00:00:20 2020   3   8    0   0 20.0016    279.1753      0.00230
## 5 2020-03-08 00:00:24 2020   3   8    0   0 24.9984    279.1963      0.00230
## 6 2020-03-08 00:00:29 2020   3   8    0   0 29.9988    279.2176      0.00230
##    U_WIND   V_WIND Wind.Speed Wind.Direction Station
## 1 0.67758 -2.85109   2.930500       346.6313     JFK
## 2 0.69463 -2.78912   2.874318       346.0150     JFK
## 3 0.69894 -2.72728   2.815417       345.6258     JFK
## 4 0.70594 -2.67733   2.768835       345.2288     JFK
## 5 0.71077 -2.64125   2.735214       344.9383     JFK
## 6 0.70793 -2.60328   2.697820       344.7870     JFK
##   Station           Date.Time Temperature Relative.Humidity Wind.Direction
## 1     JFK 2020-03-09 00:00:00         NaN               NaN            240
## 2     JFK 2020-03-09 00:05:00         NaN               NaN            240
## 3     JFK 2020-03-09 00:10:00         NaN               NaN            240
## 4     JFK 2020-03-09 00:15:00         NaN               NaN            240
## 5     JFK 2020-03-09 00:20:00         NaN               NaN            240
## 6     JFK 2020-03-09 00:25:00         NaN               NaN            NaN
##   Wind.Speed year mon day hour min sec
## 1   8.744856 2020   3   9    0   0   0
## 2   8.230453 2020   3   9    0   5   0
## 3   7.201646 2020   3   9    0  10   0
## 4   6.687243 2020   3   9    0  15   0
## 5   7.716049 2020   3   9    0  20   0
## 6   7.201646 2020   3   9    0  25   0

Locations for Plots

Match Times for Model and Observations

Select Day of Interest

Time-matching is performed using a routine that can be found in Analysis01-Time_Matching_Problem.Rmd. The time matching will be done per variable. For the Forecast-Hour Evaluation product, we will focus on the temperature, wind speed and wind direction variables. Also, now that we have read all the TS data and ASOS data, we need to extract the day of interest, or doi for the time-series.

Note that for this product the “day of interest” will always be the UTC date of the day before.

We now have filtered data frames for the observations and model data for the day of interest.

Next, we will select only the temperature data for comparing the model and observations. This needs to be done on a per station basis. Note that we use the function drop_na() to drop rows which contain NaN or NA data. Since each variable is measured at different intervals, not all variables will have data available at every time step in the ASOS data. The functions may be too sensitive to missing data and thus we take care to remvove it here from the observations, after we have isolated a particular variable.

Temperature Time-Matching

Location: JFK

Location: LGA

Location: NYC

Wind Speed Time-Matching

Location: JFK

Location: LGA

Location: NYC

Wind Direction Time-Matching

Location: JFK

Location: LGA

Location: NYC

Forecast Hour Evaluation for JFK

For the temperature data I will use Bias, RMSE and MAE for the comparison statistics

JFK - WRF 2-m Temperature (K) Performance
Forecast.Init BIAS RMSE MAE
1 WRF D-0 0.566 1.385 1.164
2 WRF D-1 1.089 2.520 2.099
3 WRF D-2 0.580 1.524 1.334
JFK - WRF 10-m Wind Speed (m/s) Performance
Forecast.Init BIAS RMSE MAE
1 WRF D-0 -0.822 1.741 1.366
2 WRF D-1 -0.261 1.284 1.012
3 WRF D-2 -0.400 1.526 1.220
JFK - WRF 10-m Wind Direction (degN) Performance
Forecast.Init RMSE MAE
1 WRF D-0 34.016 29.393
2 WRF D-1 36.081 32.481
3 WRF D-2 38.319 33.557

Forecast Hour Evaluation for LGA

LGA - WRF 2-m Temperature (K) Performance
Forecast.Init BIAS RMSE MAE
1 WRF D-0 -1.461 1.873 1.614
2 WRF D-1 -1.503 1.637 1.509
3 WRF D-2 -2.236 2.533 2.386
LGA - WRF 10-m Wind Speed (m/s) Performance
Forecast.Init BIAS RMSE MAE
1 WRF D-0 -2.937 3.271 2.940
2 WRF D-1 -2.907 3.251 2.927
3 WRF D-2 -2.924 3.240 2.924
LGA - WRF 10-m Wind Direction (degN) Performance
Forecast.Init RMSE MAE
1 WRF D-0 15.868 12.840
2 WRF D-1 19.950 14.902
3 WRF D-2 17.245 13.064

Forecast Hour Evaluation for NYC

NYC - WRF 2-m Temperature (K) Performance
Forecast.Init BIAS RMSE MAE
1 WRF D-0 -1.084 1.677 1.495
2 WRF D-1 -1.103 1.306 1.180
3 WRF D-2 -1.801 2.063 1.928
NYC - WRF 10-m Wind Speed (m/s) Performance
Forecast.Init BIAS RMSE MAE
1 WRF D-0 -2.356 2.739 2.356
2 WRF D-1 -2.312 2.679 2.312
3 WRF D-2 -2.243 2.619 2.243
NYC - WRF 10-m Wind Direction (degN) Performance
Forecast.Init RMSE MAE
1 WRF D-0 16.180 13.835
2 WRF D-1 11.908 9.458
3 WRF D-2 10.080 8.146

uWRF and ASOS Time-Series Visualization

Temperature

## Warning: Removed 60 rows containing missing values (geom_point).
## Warning: Removed 9 rows containing missing values (geom_path).

Wind Speed

Wind Direction