Introduction

In this document I will explore how to create the first part of the evaluation system I proposed. The working title of this is the “Forecast-Hour Evaluation.” The idea here is that we are looking at the performance of the model by looking at how it performed with different start times (using the most recent 00-hr forecast as input).

## Warning in rgl.init(initValue, onlyNULL): RGL: unable to open X11 display
## Warning: 'rgl.init' failed, running with 'rgl.useNULL = TRUE'.

Read Model and Observation Data

Read WRF Data

For this evaluation system we need to look at three different output folders. Here we use the folders named, forecast_day_minus_0, forecast_day_minus_1, forecast_day_minus_2. The contents of each of these folders will be similar: wrfout files for 86 forecast hours and time-series data for different locations of interest. Here we will first read the forecast data.

Read the OBS Data

Now we will read the observation data from the ASOS stations. The script that downloads the data is in ./obs_station_day_minus_0/dl_ny_asos.py. The lines for the dates to download need to be changed before running it. Once the files are download, the lines below reads the data and adds column names.

Unit Conversion

Model and observation data do not share the same units for the same variable. For temperature, WRF is in Kelvin and ASOS is in degreesF. For winds, WRF is in m/s and ASOS is in knots. The formulas used to convert the numbers to a common system is shown here. For temperature I will use Kelvin, and m/s for wind speeds.

Combined Data Frames

Now we have one data frame for all the observations, and three (3) data frames of the WRF data (one data frame per forecast init time). The lines below provide a visual of the data frames.

##             Date.Time year mon day hour min     sec Temperature Mixing.Ratio
## 1 2020-03-23 00:00:05 2020   3  23    0   0  5.0004    276.4862      0.00313
## 2 2020-03-23 00:00:10 2020   3  23    0   0 10.0008    276.5794      0.00313
## 3 2020-03-23 00:00:15 2020   3  23    0   0 15.0012    276.6618      0.00313
## 4 2020-03-23 00:00:20 2020   3  23    0   0 20.0016    276.7345      0.00314
## 5 2020-03-23 00:00:24 2020   3  23    0   0 24.9984    276.7975      0.00314
## 6 2020-03-23 00:00:29 2020   3  23    0   0 29.9988    276.8546      0.00314
##     U_WIND  V_WIND Wind.Speed Wind.Direction Station
## 1 -4.74603 2.71537   5.467910       119.7754     JFK
## 2 -4.62852 2.63980   5.328390       119.6976     JFK
## 3 -4.54188 2.58068   5.223848       119.6051     JFK
## 4 -4.45942 2.52421   5.124262       119.5116     JFK
## 5 -4.38091 2.46790   5.028211       119.3939     JFK
## 6 -4.30723 2.41769   4.939378       119.3059     JFK
##             Date.Time year mon day hour min     sec Temperature Mixing.Ratio
## 1 2020-03-22 00:00:05 2020   3  22    0   0  5.0004    280.9452      0.00322
## 2 2020-03-22 00:00:10 2020   3  22    0   0 10.0008    280.9665      0.00322
## 3 2020-03-22 00:00:15 2020   3  22    0   0 15.0012    280.9866      0.00322
## 4 2020-03-22 00:00:20 2020   3  22    0   0 20.0016    281.0061      0.00323
## 5 2020-03-22 00:00:24 2020   3  22    0   0 24.9984    281.0251      0.00323
## 6 2020-03-22 00:00:29 2020   3  22    0   0 29.9988    281.0446      0.00323
##     U_WIND   V_WIND Wind.Speed Wind.Direction Station
## 1 -0.74185 -0.88287   1.153170       40.03936     JFK
## 2 -0.73771 -0.86946   1.140253       40.31358     JFK
## 3 -0.73021 -0.85208   1.122162       40.59570     JFK
## 4 -0.72304 -0.84176   1.109661       40.66133     JFK
## 5 -0.72123 -0.83101   1.100341       40.95457     JFK
## 6 -0.70656 -0.82398   1.085435       40.61297     JFK
##             Date.Time year mon day hour min     sec Temperature Mixing.Ratio
## 1 2020-03-21 00:00:05 2020   3  21    0   0  5.0004    282.2782      0.00637
## 2 2020-03-21 00:00:10 2020   3  21    0   0 10.0008    282.2890      0.00637
## 3 2020-03-21 00:00:15 2020   3  21    0   0 15.0012    282.2994      0.00637
## 4 2020-03-21 00:00:20 2020   3  21    0   0 20.0016    282.3095      0.00637
## 5 2020-03-21 00:00:24 2020   3  21    0   0 24.9984    282.3202      0.00638
## 6 2020-03-21 00:00:29 2020   3  21    0   0 29.9988    282.3323      0.00638
##     U_WIND  V_WIND Wind.Speed Wind.Direction Station
## 1 -0.48246 0.00766  0.4825208       90.90961     JFK
## 2 -0.48280 0.00671  0.4828466       90.79625     JFK
## 3 -0.48615 0.01237  0.4863074       91.45757     JFK
## 4 -0.47869 0.00569  0.4787238       90.68102     JFK
## 5 -0.47714 0.00274  0.4771479       90.32902     JFK
## 6 -0.47076 0.00563  0.4707937       90.68519     JFK
##   Station           Date.Time Temperature Relative.Humidity Wind.Direction
## 1     JFK 2020-03-22 00:00:00         NaN               NaN             30
## 2     JFK 2020-03-22 00:05:00         NaN               NaN             30
## 3     JFK 2020-03-22 00:10:00         NaN               NaN             30
## 4     JFK 2020-03-22 00:15:00         NaN               NaN             30
## 5     JFK 2020-03-22 00:20:00         NaN               NaN             30
## 6     JFK 2020-03-22 00:25:00         NaN               NaN             10
##   Wind.Speed year mon day hour min sec
## 1   2.572016 2020   3  22    0   0   0
## 2   4.115226 2020   3  22    0   5   0
## 3   4.629630 2020   3  22    0  10   0
## 4   3.600823 2020   3  22    0  15   0
## 5   4.115226 2020   3  22    0  20   0
## 6   2.572016 2020   3  22    0  25   0

Locations for Plots

Match Times for Model and Observations

Select Day of Interest

Time-matching is performed using a routine that can be found in Analysis01-Time_Matching_Problem.Rmd. The time matching will be done per variable. For the Forecast-Hour Evaluation product, we will focus on the temperature, wind speed and wind direction variables. Also, now that we have read all the TS data and ASOS data, we need to extract the day of interest, or doi for the time-series.

Note that for this product the “day of interest” will always be the UTC date of the day before.

We now have filtered data frames for the observations and model data for the day of interest.

Next, we will select only the temperature data for comparing the model and observations. This needs to be done on a per station basis. Note that we use the function drop_na() to drop rows which contain NaN or NA data. Since each variable is measured at different intervals, not all variables will have data available at every time step in the ASOS data. The functions may be too sensitive to missing data and thus we take care to remvove it here from the observations, after we have isolated a particular variable.

Temperature Time-Matching

Location: JFK

Location: LGA

Location: NYC

Wind Speed Time-Matching

Location: JFK

Location: LGA

Location: NYC

Wind Direction Time-Matching

Location: JFK

Location: LGA

Location: NYC

Forecast Hour Evaluation for JFK

For the temperature data I will use Bias, RMSE and MAE for the comparison statistics

JFK - WRF 2-m Temperature (K) Performance
Forecast.Init BIAS RMSE MAE
1 WRF D-0 0.788 0.989 0.807
2 WRF D-1 0.455 0.802 0.616
3 WRF D-2 -2.463 3.134 2.638
JFK - WRF 10-m Wind Speed (m/s) Performance
Forecast.Init BIAS RMSE MAE
1 WRF D-0 -3.258 3.573 3.269
2 WRF D-1 -2.492 2.839 2.577
3 WRF D-2 -4.134 4.381 4.134
JFK - WRF 10-m Wind Direction (degN) Performance
Forecast.Init RMSE MAE
1 WRF D-0 17.314 10.647
2 WRF D-1 20.655 14.776
3 WRF D-2 57.121 52.315

Forecast Hour Evaluation for LGA

LGA - WRF 2-m Temperature (K) Performance
Forecast.Init BIAS RMSE MAE
1 WRF D-0 0.652 1.071 0.875
2 WRF D-1 0.518 1.138 0.910
3 WRF D-2 -1.851 2.398 1.928
LGA - WRF 10-m Wind Speed (m/s) Performance
Forecast.Init BIAS RMSE MAE
1 WRF D-0 -4.299 4.429 4.299
2 WRF D-1 -3.986 4.157 3.986
3 WRF D-2 -4.009 4.161 4.009
LGA - WRF 10-m Wind Direction (degN) Performance
Forecast.Init RMSE MAE
1 WRF D-0 25.044 19.210
2 WRF D-1 32.124 27.022
3 WRF D-2 67.243 55.429

Forecast Hour Evaluation for NYC

NYC - WRF 2-m Temperature (K) Performance
Forecast.Init BIAS RMSE MAE
1 WRF D-0 1.324 1.504 1.324
2 WRF D-1 0.974 1.413 1.144
3 WRF D-2 -1.020 1.841 1.448
NYC - WRF 10-m Wind Speed (m/s) Performance
Forecast.Init BIAS RMSE MAE
1 WRF D-0 -3.185 3.319 3.185
2 WRF D-1 -3.029 3.178 3.029
3 WRF D-2 -3.240 3.384 3.240
NYC - WRF 10-m Wind Direction (degN) Performance
Forecast.Init RMSE MAE
1 WRF D-0 31.365 23.240
2 WRF D-1 33.695 26.421
3 WRF D-2 60.886 42.761

uWRF and ASOS Time-Series Visualization

Temperature

Wind Speed

Wind Direction