Introduction

In this document I will explore how to create the first part of the evaluation system I proposed. The working title of this is the “Forecast-Hour Evaluation.” The idea here is that we are looking at the performance of the model by looking at how it performed with different start times (using the most recent 00-hr forecast as input).

## Warning in rgl.init(initValue, onlyNULL): RGL: unable to open X11 display
## Warning: 'rgl.init' failed, running with 'rgl.useNULL = TRUE'.

Read Model and Observation Data

Read WRF Data

For this evaluation system we need to look at three different output folders. Here we use the folders named, forecast_day_minus_0, forecast_day_minus_1, forecast_day_minus_2. The contents of each of these folders will be similar: wrfout files for 86 forecast hours and time-series data for different locations of interest. Here we will first read the forecast data.

Read the OBS Data

Now we will read the observation data from the ASOS stations. The script that downloads the data is in ./obs_station_day_minus_0/dl_ny_asos.py. The lines for the dates to download need to be changed before running it. Once the files are download, the lines below reads the data and adds column names.

Unit Conversion

Model and observation data do not share the same units for the same variable. For temperature, WRF is in Kelvin and ASOS is in degreesF. For winds, WRF is in m/s and ASOS is in knots. The formulas used to convert the numbers to a common system is shown here. For temperature I will use Kelvin, and m/s for wind speeds.

Combined Data Frames

Now we have one data frame for all the observations, and three (3) data frames of the WRF data (one data frame per forecast init time). The lines below provide a visual of the data frames.

##             Date.Time year mon day hour min     sec Temperature Mixing.Ratio
## 1 2020-05-10 00:00:05 2020   5  10    0   0  5.0004    279.5222      0.00376
## 2 2020-05-10 00:00:10 2020   5  10    0   0 10.0008    279.6288      0.00376
## 3 2020-05-10 00:00:15 2020   5  10    0   0 15.0012    279.7226      0.00376
## 4 2020-05-10 00:00:20 2020   5  10    0   0 20.0016    279.8058      0.00376
## 5 2020-05-10 00:00:24 2020   5  10    0   0 24.9984    279.8806      0.00376
## 6 2020-05-10 00:00:29 2020   5  10    0   0 29.9988    279.9486      0.00375
##    U_WIND   V_WIND Wind.Speed Wind.Direction Station
## 1 5.83965 -1.62780   6.062281       285.5758     JFK
## 2 5.68336 -1.59002   5.901588       285.6299     JFK
## 3 5.56474 -1.55119   5.776896       285.5760     JFK
## 4 5.46019 -1.52387   5.668849       285.5937     JFK
## 5 5.35828 -1.49706   5.563484       285.6099     JFK
## 6 5.26687 -1.47101   5.468436       285.6048     JFK
##             Date.Time year mon day hour min     sec Temperature Mixing.Ratio
## 1 2020-05-09 00:00:05 2020   5   9    0   0  5.0004    281.5814      0.00529
## 2 2020-05-09 00:00:10 2020   5   9    0   0 10.0008    281.6526      0.00529
## 3 2020-05-09 00:00:15 2020   5   9    0   0 15.0012    281.7164      0.00529
## 4 2020-05-09 00:00:20 2020   5   9    0   0 20.0016    281.7732      0.00529
## 5 2020-05-09 00:00:24 2020   5   9    0   0 24.9984    281.8219      0.00529
## 6 2020-05-09 00:00:29 2020   5   9    0   0 29.9988    281.8640      0.00529
##     U_WIND  V_WIND Wind.Speed Wind.Direction Station
## 1 -3.49954 1.96332   4.012656       119.2934     JFK
## 2 -3.43328 1.92638   3.936795       119.2964     JFK
## 3 -3.38511 1.89565   3.879750       119.2487     JFK
## 4 -3.33993 1.86478   3.825250       119.1759     JFK
## 5 -3.30105 1.83814   3.778318       119.1106     JFK
## 6 -3.26853 1.81353   3.737938       119.0235     JFK
##             Date.Time year mon day hour min     sec Temperature Mixing.Ratio
## 1 2020-05-08 00:00:05 2020   5   8    0   0  5.0004    286.4349      0.00585
## 2 2020-05-08 00:00:10 2020   5   8    0   0 10.0008    286.5168      0.00585
## 3 2020-05-08 00:00:15 2020   5   8    0   0 15.0012    286.5887      0.00585
## 4 2020-05-08 00:00:20 2020   5   8    0   0 20.0016    286.6533      0.00586
## 5 2020-05-08 00:00:24 2020   5   8    0   0 24.9984    286.7126      0.00586
## 6 2020-05-08 00:00:29 2020   5   8    0   0 29.9988    286.7672      0.00586
##    U_WIND  V_WIND Wind.Speed Wind.Direction Station
## 1 2.01228 3.40678   3.956693       210.5690     JFK
## 2 1.94986 3.24467   3.785477       211.0034     JFK
## 3 1.89914 3.12338   3.655439       211.3013     JFK
## 4 1.85893 3.02089   3.547027       211.6064     JFK
## 5 1.82404 2.93529   3.455872       211.8575     JFK
## 6 1.79060 2.86199   3.375979       212.0321     JFK
##   Station           Date.Time Temperature Relative.Humidity Wind.Direction
## 1     JFK 2020-05-09 00:00:00         NaN               NaN            100
## 2     JFK 2020-05-09 00:05:00         NaN               NaN             70
## 3     JFK 2020-05-09 00:10:00         NaN               NaN             90
## 4     JFK 2020-05-09 00:15:00         NaN               NaN             90
## 5     JFK 2020-05-09 00:20:00         NaN               NaN             60
## 6     JFK 2020-05-09 00:21:00    280.3722             89.49             60
##   Wind.Speed year mon day hour min sec
## 1   2.572016 2020   5   9    0   0   0
## 2   2.572016 2020   5   9    0   5   0
## 3   2.572016 2020   5   9    0  10   0
## 4   2.572016 2020   5   9    0  15   0
## 5   2.572016 2020   5   9    0  20   0
## 6   2.572016 2020   5   9    0  21   0

Locations for Plots

Match Times for Model and Observations

Select Day of Interest

Time-matching is performed using a routine that can be found in Analysis01-Time_Matching_Problem.Rmd. The time matching will be done per variable. For the Forecast-Hour Evaluation product, we will focus on the temperature, wind speed and wind direction variables. Also, now that we have read all the TS data and ASOS data, we need to extract the day of interest, or doi for the time-series.

Note that for this product the “day of interest” will always be the UTC date of the day before.

We now have filtered data frames for the observations and model data for the day of interest.

Next, we will select only the temperature data for comparing the model and observations. This needs to be done on a per station basis. Note that we use the function drop_na() to drop rows which contain NaN or NA data. Since each variable is measured at different intervals, not all variables will have data available at every time step in the ASOS data. The functions may be too sensitive to missing data and thus we take care to remvove it here from the observations, after we have isolated a particular variable.

Temperature Time-Matching

Location: JFK

Location: LGA

Location: NYC

Wind Speed Time-Matching

Location: JFK

Location: LGA

Location: NYC

Wind Direction Time-Matching

Location: JFK

Location: LGA

Location: NYC

Forecast Hour Evaluation for JFK

For the temperature data I will use Bias, RMSE and MAE for the comparison statistics

JFK - WRF 2-m Temperature (K) Performance
Forecast.Init BIAS RMSE MAE
1 WRF D-0 -0.103 1.053 0.956
2 WRF D-1 -0.770 1.124 0.986
3 WRF D-2 -1.259 1.668 1.414
JFK - WRF 10-m Wind Speed (m/s) Performance
Forecast.Init BIAS RMSE MAE
1 WRF D-0 -2.419 3.019 2.541
2 WRF D-1 -1.906 2.523 2.067
3 WRF D-2 -1.372 1.964 1.623
JFK - WRF 10-m Wind Direction (degN) Performance
Forecast.Init RMSE MAE
1 WRF D-0 11.659 7.636
2 WRF D-1 16.399 12.003
3 WRF D-2 19.077 14.150

Forecast Hour Evaluation for LGA

LGA - WRF 2-m Temperature (K) Performance
Forecast.Init BIAS RMSE MAE
1 WRF D-0 -0.756 1.504 1.224
2 WRF D-1 -1.576 2.002 1.764
3 WRF D-2 -2.163 2.453 2.163
LGA - WRF 10-m Wind Speed (m/s) Performance
Forecast.Init BIAS RMSE MAE
1 WRF D-0 -4.366 4.625 4.366
2 WRF D-1 -4.060 4.331 4.060
3 WRF D-2 -3.952 4.257 3.952
LGA - WRF 10-m Wind Direction (degN) Performance
Forecast.Init RMSE MAE
1 WRF D-0 15.372 12.650
2 WRF D-1 18.975 14.625
3 WRF D-2 19.920 16.186

Forecast Hour Evaluation for NYC

NYC - WRF 2-m Temperature (K) Performance
Forecast.Init BIAS RMSE MAE
1 WRF D-0 -0.025 0.982 0.792
2 WRF D-1 -0.808 1.187 1.089
3 WRF D-2 -1.378 1.560 1.379
NYC - WRF 10-m Wind Speed (m/s) Performance
Forecast.Init BIAS RMSE MAE
1 WRF D-0 -2.354 2.703 2.470
2 WRF D-1 -2.217 2.584 2.347
3 WRF D-2 -2.203 2.539 2.319
NYC - WRF 10-m Wind Direction (degN) Performance
Forecast.Init RMSE MAE
1 WRF D-0 35.132 21.454
2 WRF D-1 34.651 19.475
3 WRF D-2 33.216 21.376

uWRF and ASOS Time-Series Visualization

Temperature

## Warning: Removed 22 rows containing missing values (geom_point).

Wind Speed

Wind Direction