In this document I will explore how to create the first part of the evaluation system I proposed. The working title of this is the “Forecast-Hour Evaluation.” The idea here is that we are looking at the performance of the model by looking at how it performed with different start times (using the most recent 00-hr forecast as input).
## Warning in rgl.init(initValue, onlyNULL): RGL: unable to open X11 display
## Warning: 'rgl.init' failed, running with 'rgl.useNULL = TRUE'.
For this evaluation system we need to look at three different output folders. Here we use the folders named, forecast_day_minus_0
, forecast_day_minus_1
, forecast_day_minus_2
. The contents of each of these folders will be similar: wrfout files for 86 forecast hours and time-series data for different locations of interest. Here we will first read the forecast data.
Now we will read the observation data from the ASOS stations. The script that downloads the data is in ./obs_station_day_minus_0/dl_ny_asos.py
. The lines for the dates to download need to be changed before running it. Once the files are download, the lines below reads the data and adds column names.
Model and observation data do not share the same units for the same variable. For temperature, WRF is in Kelvin and ASOS is in degreesF. For winds, WRF is in m/s and ASOS is in knots. The formulas used to convert the numbers to a common system is shown here. For temperature I will use Kelvin, and m/s for wind speeds.
Now we have one data frame for all the observations, and three (3) data frames of the WRF data (one data frame per forecast init time). The lines below provide a visual of the data frames.
## Date.Time year mon day hour min sec Temperature Mixing.Ratio
## 1 2020-05-17 00:00:05 2020 5 17 0 0 5.0004 288.5227 0.00823
## 2 2020-05-17 00:00:10 2020 5 17 0 0 10.0008 288.6564 0.00822
## 3 2020-05-17 00:00:15 2020 5 17 0 0 15.0012 288.7763 0.00822
## 4 2020-05-17 00:00:20 2020 5 17 0 0 20.0016 288.8852 0.00822
## 5 2020-05-17 00:00:24 2020 5 17 0 0 24.9984 288.9857 0.00822
## 6 2020-05-17 00:00:29 2020 5 17 0 0 29.9988 289.0793 0.00822
## U_WIND V_WIND Wind.Speed Wind.Direction Station
## 1 0.34355 2.95215 2.972073 186.6378 JFK
## 2 0.31803 2.83967 2.857423 186.3902 JFK
## 3 0.30410 2.75391 2.770649 186.3013 JFK
## 4 0.29005 2.67871 2.694368 186.1799 JFK
## 5 0.27700 2.61018 2.624837 186.0577 JFK
## 6 0.26693 2.55218 2.566101 185.9708 JFK
## Date.Time year mon day hour min sec Temperature Mixing.Ratio
## 1 2020-05-16 00:00:05 2020 5 16 0 0 5.0004 289.1936 0.00946
## 2 2020-05-16 00:00:10 2020 5 16 0 0 10.0008 289.3650 0.00946
## 3 2020-05-16 00:00:15 2020 5 16 0 0 15.0012 289.5104 0.00946
## 4 2020-05-16 00:00:20 2020 5 16 0 0 20.0016 289.6375 0.00946
## 5 2020-05-16 00:00:24 2020 5 16 0 0 24.9984 289.7510 0.00946
## 6 2020-05-16 00:00:29 2020 5 16 0 0 29.9988 289.8541 0.00945
## U_WIND V_WIND Wind.Speed Wind.Direction Station
## 1 0.93961 5.48661 5.566485 189.7179 JFK
## 2 0.84782 5.16041 5.229592 189.3300 JFK
## 3 0.78008 4.93052 4.991849 188.9905 JFK
## 4 0.73242 4.74412 4.800324 188.7763 JFK
## 5 0.69566 4.59212 4.644514 188.6142 JFK
## 6 0.66952 4.45468 4.504712 188.5473 JFK
## Date.Time year mon day hour min sec Temperature Mixing.Ratio
## 1 2020-05-15 00:00:05 2020 5 15 0 0 5.0004 285.8225 0.00745
## 2 2020-05-15 00:00:10 2020 5 15 0 0 10.0008 285.9896 0.00746
## 3 2020-05-15 00:00:15 2020 5 15 0 0 15.0012 286.1297 0.00746
## 4 2020-05-15 00:00:20 2020 5 15 0 0 20.0016 286.2513 0.00746
## 5 2020-05-15 00:00:24 2020 5 15 0 0 24.9984 286.3593 0.00746
## 6 2020-05-15 00:00:29 2020 5 15 0 0 29.9988 286.4544 0.00746
## U_WIND V_WIND Wind.Speed Wind.Direction Station
## 1 0.05527 6.23564 6.235885 180.5078 JFK
## 2 -0.02734 5.83949 5.839554 179.7317 JFK
## 3 -0.08164 5.56177 5.562369 179.1590 JFK
## 4 -0.12061 5.33905 5.340412 178.7059 JFK
## 5 -0.14417 5.15583 5.157845 178.3983 JFK
## 6 -0.15835 5.00809 5.010593 178.1890 JFK
## Station Date.Time Temperature Relative.Humidity Wind.Direction
## 1 JFK 2020-05-16 00:00:00 NaN NaN 190
## 2 JFK 2020-05-16 00:05:00 NaN NaN 200
## 3 JFK 2020-05-16 00:10:00 NaN NaN NaN
## 4 JFK 2020-05-16 00:15:00 NaN NaN 190
## 5 JFK 2020-05-16 00:20:00 NaN NaN 190
## 6 JFK 2020-05-16 00:25:00 NaN NaN 190
## Wind.Speed year mon day hour min sec
## 1 7.716049 2020 5 16 0 0 0
## 2 6.687243 2020 5 16 0 5 0
## 3 7.716049 2020 5 16 0 10 0
## 4 7.201646 2020 5 16 0 15 0
## 5 7.201646 2020 5 16 0 20 0
## 6 8.744856 2020 5 16 0 25 0
Time-matching is performed using a routine that can be found in Analysis01-Time_Matching_Problem.Rmd
. The time matching will be done per variable. For the Forecast-Hour Evaluation product, we will focus on the temperature, wind speed and wind direction variables. Also, now that we have read all the TS data and ASOS data, we need to extract the day of interest, or doi
for the time-series.
Note that for this product the “day of interest” will always be the UTC date of the day before.
We now have filtered data frames for the observations and model data for the day of interest.
Next, we will select only the temperature data for comparing the model and observations. This needs to be done on a per station basis. Note that we use the function drop_na()
to drop rows which contain NaN or NA data. Since each variable is measured at different intervals, not all variables will have data available at every time step in the ASOS data. The functions may be too sensitive to missing data and thus we take care to remvove it here from the observations, after we have isolated a particular variable.
For the temperature data I will use Bias, RMSE and MAE for the comparison statistics
Forecast.Init | BIAS | RMSE | MAE | |
1 | WRF D-0 | -0.0005 | 0.606 | 0.476 |
2 | WRF D-1 | -0.141 | 0.971 | 0.802 |
3 | WRF D-2 | -0.759 | 1.080 | 0.844 |
Forecast.Init | BIAS | RMSE | MAE | |
1 | WRF D-0 | -0.859 | 1.598 | 1.202 |
2 | WRF D-1 | -1.159 | 1.906 | 1.452 |
3 | WRF D-2 | -1.058 | 1.956 | 1.513 |
Forecast.Init | RMSE | MAE | |
1 | WRF D-0 | 33.560 | 18.632 |
2 | WRF D-1 | 48.017 | 36.849 |
3 | WRF D-2 | 33.951 | 21.472 |
Forecast.Init | BIAS | RMSE | MAE | |
1 | WRF D-0 | -0.053 | 1.943 | 1.639 |
2 | WRF D-1 | 0.190 | 1.763 | 1.397 |
3 | WRF D-2 | -0.560 | 1.802 | 1.475 |
Forecast.Init | BIAS | RMSE | MAE | |
1 | WRF D-0 | -2.626 | 2.835 | 2.638 |
2 | WRF D-1 | -2.725 | 2.964 | 2.734 |
3 | WRF D-2 | -2.789 | 2.998 | 2.792 |
Forecast.Init | RMSE | MAE | |
1 | WRF D-0 | 40.539 | 29.806 |
2 | WRF D-1 | 58.401 | 45.287 |
3 | WRF D-2 | 37.823 | 28.214 |
Forecast.Init | BIAS | RMSE | MAE | |
1 | WRF D-0 | 0.379 | 1.275 | 1.023 |
2 | WRF D-1 | 1.113 | 1.822 | 1.367 |
3 | WRF D-2 | 0.236 | 0.917 | 0.740 |
Forecast.Init | BIAS | RMSE | MAE | |
1 | WRF D-0 | -0.545 | 1.637 | 1.295 |
2 | WRF D-1 | -0.496 | 1.688 | 1.333 |
3 | WRF D-2 | -0.581 | 1.663 | 1.312 |
Forecast.Init | RMSE | MAE | |
1 | WRF D-0 | 109.709 | 98.531 |
2 | WRF D-1 | 132.198 | 119.921 |
3 | WRF D-2 | 116.596 | 105.031 |
## Warning: Removed 96 rows containing missing values (geom_point).